Copyright © 2002 Taylor & Francis

Numerical Heat Transfer, Part B, 41: 211-237, 2002 $1-“ FQ‘t
]
1040-7790 /02 $12.00 + .00)

10

q‘..d.iﬂ’

CURRENT VIEWS ON GRID GENERATION: SUMMARIES
OF A PANEL DISCUSSION

Rod W. Douglass
Computational Science Methods Group, Los Alamos National Laboratory,
Los Alamos, New Mexico, USA

Graham F. Carey
Department of Aerospace Engineering and Engineering Mechanics,
The University of Texas at Austin, Austin, Texas, USA

David R. White
Parallel Computing Sciences Department, Sandia National Laboratories,
Albuquerque, New Mexico, USA

Glen A. Hansen
Computational Science Methods Group, Los Alamos National Laboratory,
Los Alamos, New Mexico, USA

Yannis Kallinderis
Department of Aerospace Engineering and Engineering Mechanics,
The University of Texas at Austin, Austin, Texas, USA

Nigel P. Weatherill

Faculty of Engineering, University of Wales Swansea,
Swansea, United Kingdom

This article summarizes presentations made by the panelists forming the Panel Session on
Grid Generation held at the Second International Symposium on Advances in Computa-
tional Heat Transfer (CHT’01) in May 2001 at Palm Cove, Queensland, Australia. First a
brief summary of the grid generation process is presented by R. Douglass. G. Carey presents
an assessment of grid generation and associated issues, trends, and techniques. D. White
provides an overview of hexahedreal meshing, followed by a discussion of adaptive mesh
refinement methods by G. Hansen. Y. Kallideris gives an update on hybrid grid methods for
Navier—Stokes problems, and N. Weatherill concludes with a look forward in a discussion of
large-scale simulations on unstructured grids.

Received 23 July 2001; accepted 5 October 2001.

The research presented in Section 2 was performed under the auspices of the U.S. Department of Energy
under contract W-7405-ENG-36. The research presented in Section 3 has been supported in part by the U.S.
Department of Energy’s Accelerated Strategic Computing Initiative grant B347883 . The research presented in
Section 5 was performed under the auspices of the U.S. Department of Energy under contract W-7405-ENG-
36. The authors of Section 7 wish to thank the European Union for funding the JULIUS project (Esprit 25050),
under which some of this work was undertaken. B. Larwood would also like to thank EPSRC for financial
support. The aerospace-duct test case was kindly provided by BAE Systems, Sowerby Research Centre.

Address correspondence to R. W. Douglass, Computational Science Methods Group, MS F645,
Los Alamos National Laboratory, Los Alamos, NM 87545, USA. E-mail: rwd@lanl.gov

211

212 R. W. DOUGLASS ET AL.

NOMENCLATURE
&, coordinates in logical smoothing space X nodal coordinate locations in 2-space
gij surface metric tensor, i,j = 1,2 (x,»)

1. INTRODUCTION

As computational heat transfer matures, the problems being solved are in-
creasingly complex. Complexity of the simulation may, for example, revolve
around geometric details in three dimensions, the physical propertiecs of the
materials to be simulated, or the physical phenomena of the simulation such as
reacting flows, thermal radiation, turbulence, or combinations thercof. From a
grid-generation perspective, these complexities lead to increasing difficulties in
generating computational grids based on a faithful adherence to physical geometric
material boundaries which may have been obtained directly from computer-aided
design (CAD) drawings, in resolving three-dimensional engineering details such as
bolts or screws or piping discontinuities, or in using grid quality measures and
methods that dynamically preserve some appropriate form of global or local nu-
merical accuracy. One easily is led to the conclusion that grid generation for such
problems is now much more than simply N do-loops for N-dimensioned-space
problems.

The Second International Symposium on Advances in Computational Heat
Transfer (CHT’01) was viewed as an ideal forum for grid-generation issues and,
consequently, the organizers agreed to offer a panel discussion highlighting the
importance of grid generation to simulation success and to provide an opportunity
for dialog on the theme of grid generation. This article is a summary of the views
presented by the panelists at that session.

2. THE GRID-GENERATION PROCESS: CONTRIBUTED
BY R. DOUGLASS

2.1. Introduction

When a (partial) differential equation set is to be solved in the context of a set
of given physical properties within a given geometric domain, either of which make it
intractable to solve exactly, approximate methods of solution are used. The ap-
proximate, discrete methods used in computational heat transfer are usually either
the structured finite-difference methods or discrete weighted-residual methods such
as finite-volume or finite-element methods. These methods have been heavily re-
searched over the past 30 or more years and may be viewed as being at a fair level of
maturity. Approximate methods like these require a decomposition of space into
discrete, contiguous volumes defining a computational grid for the problem at hand.
The process used to perform this discretization, called grid generation, is not at the
same level of maturity as the approximate solution methods, especially for three-
dimensional problems.

CURRENT VIEWS ON GRID GENERATION 213

2.2. The Process

From a grid-generation perspective, grid generation begins with a faithful re-
presentation of the geometry of the physical problem being modeled. Geometric
information may be rather straightforwardly implemented (e.g., modeling flow in a
uniform-diameter straight pipe), or it may be so complex that it comes as a multipart
object from a CAD system (e.g., flow and heat/mass transfer in the cylinder head
region of an internal combustion engine). There are typically three ways used to
represent geometry [1]: constructive solid geometry (CSG), boundary representation
(b-reps), and domain decomposition representation (dd-reps). CSG defines a domain
using a formula of set theory operations over a collection of primitive geometric
shapes (spheres, boxes, cones, etc.). B-reps define the geometry in terms of piecewise
low-degree polygons fitted to its boundaries, such as a nonuniform rational B-spline
(NURBS) representation as from a CAD or CSG model. Finally, dd-reps describe
the geometry of the boundaries by a discretization into nonoverlapping polyhedrea,
again from CAD or CSG models. Any flaws in the geometry must be repaired prior
to grid generation, a process termed geometric healing. Healing is often required for
geometry obtained from a CAD model.

The geometric difficulty in terms of grid generation lies in the inherent discrete
(piecewise) approximation of the actual domain geometric boundaries and their
included material regions, due to the decomposition of the physical domain into
linear or low-order polynomial volumes such as triangles, squares, tetrahedrons,
hexagons, etc. This is called discretization. The faces of the discrete volumes, often
called cells, elements, or zones, are not in general boundary-fitted. That is, they
would ideally be locally conforming to the exact geometry or boundary, thereby
being boundary-fitted faces and, thus, boundary-fitted cells. The result of such a
discretization would be a faithful representation of the actual physical domain. To
the extent that the element faces are not boundary-fitted, the errors in the discrete
approximation must also include a measure of the geometry (or actually physical
material) lost or gained in the boundary approximation.

There are additional concerns in the discretization process other than geo-
metric. The type of discretization used, that is, the sort of element shapes and sizes
used, depends on the material properties within and across material boundaries,
whether the physical processes being simulated have preferred directions, whether
the problem must be decomposed for parallel processing, the desired local and global
accuracy measures of the approximate method, and so forth. Of course, at the time
of the initial discretization, the grid may very likely have no idea as to the future
presence of a shock, for example, or in which direction it is propagating.

The third part of the grid-generation process involves postgeneration mod-
ifications to the grid to improve its quality. Quality measures may include combi-
nations of geometric ideas such as orthogonality of the grid, the uniformity of
volumes in the grid, and the relative amount of grid skewness or nongeometric ideas
such as error measures associated with the discretization of the dependent variables
in the problem. Quality modifications to the grid may be a one-time event done prior
to submitting the grid to the equation solver, or may be a dynamic process either
done explicitly for each step in the solver (iteration or time step) or implicitly linked
to the physics variables to be solved for, all as one large problem—the grid along

214 R. W. DOUGLASS ET AL.

with the physics. Modifications may also require local refinement or derefinement of
the grid in order to meet the grid quality measures selected for the problem at that
current time step.

Each of these three pieces of the grid-generation process—geometry, dis-
cretization, and grid modification—is a challenging area of research. Some advances
within each have been made, but the challenge remains to present users with a unified
grid-generation tool set incorporating even some of the ideas listed above.

2.3. Basic Concepts

Categories of grids. Grids are either structured or unstructured. A structured
grid is characterized by all grid elements being similar in shape (e.g., rectangles or hex-
ahedra), as in a Cartesian grid (an i, j, k grid), the grid is easy to generate and has a
simple data structure, by grid quality deterioration as domain complexity increases,
and by strong performance for problems with smooth solutions. An unstructured
grid, however, has varying element topology and size (e.g., mixtures of hexahedral
and tetrahedral elements), it is more difficult to generate these grids, and they require
a more complicated data structure, typically with each element being composed of a
list of faces that themselves are composed of lists of nodes. The grid may then be con-
nected through, for example, a graph of all neighboring nodes for each node. As do-
main complexity increases, the grid quality tends to remain high, and they perform
well on problems with nonsmooth solutions such as shocks or combustion fronts.

Basic grid-generation methods. There are several algorithms or methods
developed for generating grids [1], some of which are well researched and others of
which are still under development. Delaunay triangulation is discussed in Section 3,
while quadtree and octree refinement are discussed in Sections 5 and 6. Sphere pack-
ing, advancing-front, and methods still under development, namely, medial surface/
potential methods, whisker weaving, h-morph, hexahedral-tetrahedral plastering,
etc., are outlined in Section 4.

Grid quality concerns. Once a grid is established, it may be necessary to
modify it due to locally or globally poor quality. Grid quality depends, of course,
on the measure used to quantify quality. Such a measure might include some or
all of: degree of capture of the relevant geometric details of the physical domain
as well as the length scales of the physics being simulated, the level of grid conform-
ality, smoothness, alignment with physical phenomena, aspect ratio, and orthogon-
ality. These ideas have been used recently to optimize three-dimensional grids within
a given grid topology (cf. Section 5).

Of course, there remain many open questions as to optimization of grid
quality, one of which is the mathematical relation between truncation error for the
discrete formulation of the governing equations and the metric elements listed just
above. Another is the advantage of directly coupling the grid quality optimization
process with the physics solution, thereby solving for grid point locations at the same
time as the physics using an appropriate metric to couple the grid and the physics.
What, then, are the best metrics? What topological operations beyond refinement
will be needed to produce the optimum simulation? If grid point movement is ex-
plicitly uncoupled from the physics solve, then how should the underlying physics be

CURRENT VIEWS ON GRID GENERATION 215

remapped onto the new grid in order to conserve mass, momentum, energy, etc.? For
parallel processing, how is dynamic grid refinement done?

3. GRID GENERATION, GRID MANIPULATION, RELIABILITY,
AND ACCURACY: TECHNIQUES, TRENDS, AND OPEN ISSUES:
CONTRIBUTED BY G. F. CAREY

3.1. Introduction

The rapid development of microelectronics during the past three decades, and
continuing hardware advances, have dramatically expanded our computational
capabilities. John von Neumann remarked in the middle of the last century, in his
report on the ENIAC and simulation work related to the Manhattan Project, that
computer technology would impact our entire approach to engineering and scientific
analysis. He mentioned specifically such areas as fluid dynamics and electro-
magnetics but pointed out that the influence would be pervasive. The growth in
computer technology has exceeded our wildest expectations, and we are now in a
position to address complex nonlinear applications in engineering and science in an
unprecedented manner. Moreover, the relatively recent advances in parallel PC
cluster technology imply that very significant computational power will be widely
available and inexpensive.

From the standpoint of engineering analysis and design in areas such as coupled
fluid flow and transport, this implies that complex engineering systems can now be
analyzed and redesigned using optimization strategies or controlled by optimal con-
trol approaches. It also implies that many problems involving nonlinear, coupled
multiphysics and multiscale behavior are now within reach of computer simulation for
the first time. What, then, remain as major impediments to progress? Perhaps the key
obstacles are not in the analysis methodology and computational kernels, but in our
ability to generate and adapt the underlying unstructured grids in a way that will yield
reliable accurate simulations. The nature of the problem we encounter here is best
illustrated by noting that a real engineering application to heat transfer, fluid flow, and
stress analysis in a system involving hundreds of components may take several man-
weeks to grid using the software tools available today. Indeed, even for quite simple
domains, present state-of-the-art grid generators may fail to complete a valid grid or
may complete a grid containing cells that are ill-shaped or otherwise unacceptable.

The goal here is to summarize briefly some of the key ideas associated with
unstructured grid generation and grid adaption, describe current progress in these
areas, and state some open issues or problems that warrant attention. We begin with
some comments on automated unstructured grid generation, and cell quality, discuss
related issues for grid smoothing and adaptation, include remarks on the role of
error indicators in ascertaining computational reliability of a grid, and conclude with
some additional observations arising out of the load-balancing needs for parallel
computing.

3.2. Unstructured Grid Generation

Techniques of general applicability for automated grid generation fall mainly
into two categories: (1) Delaunay schemes and (2) advancing-front algorithms. In the

216 R. W. DOUGLASS ET AL.

Delaunay approach the basic idea is: given a set of points in the plane, a triangu-
lation of the convex hull of these points can be “improved’” by edge “swaps” to
achieve a triangulation in which the minimum angle has been maximized. The idea is
easily illustrated by considering an adjacent pair of triangles defining a convex
quadrilateral—then one exchanges the shared edge (a diagonal of the quadrilateral)
for the other diagonal if this yields a new pair of triangles whose minimum angle
is greater than the minimum angle of the previous triangulation. This test can be
conveniently implemented on a computer by testing whether the remaining vertex of
the quadrilateral is inside the circumcircle defined by the other three vertices
of a constituent triangle. The approach will efficiently yield 2-D triangulations
that are optimal in the sense stated. The triangulation is unique within trivial
edge swaps.

Some key issues in triangulation. The max-min angle property and cir-
cumcircle test equivalence does not hold in three dimensions, and face swaps in three
dimensions may not reproduce the same number of tetrahedra. The max—min angle
criterion is appealing in an esthetic sense, but in computations where boundary or
interior layers are present, “‘anisotropic’’ grids that contain slender elements with
small angles in these layer regions will be desirable. Likewise, in adaptive mesh re-
finement (AMR) or mesh redistribution, directional refinement is again desirable
for these types of applications. In the spirit of the second point just made, interpola-
tion estimates from approximation theory and due consideration of the condition
number of the algebraic systems that are generated both imply that the maximum
obtuse angles rather than the minimum acute angles are a more critical concern.

There are a number of software systems available for advancing-front grid
generation (CUBIT Mesh Generation Toolkit, Web site: http://endo.sandia.gov/
SEACAS/CUBIT/Cubit.html). These algorithms are also sometimes used to gen-
erate an initial tessellation prior to applying a Delaunay procedure or a grid-
smoothing strategy. However, the strong interest expressed by the engineering
community for quality meshes comprised only of hexahedra places a difficult con-
straint on the meshing problem in three dimensions. The essential idea here is to
“plaster’’ hexahedra with quadrilateral faces on the surfaces and interfaces layer by
layer so that the domain is progressively filled, but several difficulties may arise,
especially for complex geometry.

Some key issues in advancing-front methods. The advancing fronts from
multiple surfaces intersect and the algorithm has to be able to contend with the un-
usual topologies arising from these intersecting surfaces. Present approaches cannot
guarantee completion of an all-hex grid in this manner. One can generate all-hex
meshes from a tetrahedral grid by subdividing all the tetrahedra to hexahedra in a
consistent manner, but the resulting hex cells are not well shaped and not amenable
to smoothing. Hybrid grids containing hexahedral and tetrahedral elements with
transition pyramids appear a viable solution, but the engineering analyst must pro-
duce stable elements (nonlocking, no hour-glassing, no spurious modes in the appli-
cation class) for the base elements and the transition elements. The geometry dictates
the mesh gradation in the basic advancing-front schemes, and this may not be the
grading desired by the analyst for the problem class. The problem of directional
mesh grading remains.

http://endo.sandia.gov/SEACAS/CUBIT/Cubit.html
http://endo.sandia.gov/SEACAS/CUBIT/Cubit.html

CURRENT VIEWS ON GRID GENERATION 217

3.3. Adaptive Refinement /Coarsening

One of the great promises in the meshing area is that of automating not only an
initial grid generation but also subsequent optimization and control of the grid to
tailor it to the problem being solved [2]. These ideas of adaptive control of grids are
discussed in [3] and will not be elaborated upon here. Suffice it to say that much of
the burden of grid-generation completion can be shouldered by means of a good
adaptive refinement algorithm. Since refinement and derefinement are also logical
strategies that should sensibly be part of the engineering analysis algorithm, this is
the ideal approach. It also provides a convenient data structure for ‘“mining’ si-
mulation results and for fast remote visualization. Why, then, are adaptive mesh
refinement (AMR) approaches not more widely embraced and adopted as an integral
part of grid-generation software and analysis software? There are several reasons.
Most notably, first of all, AMR usually presumes the existence of a zero-level grid,
so the main problem of grid generation may not be circumvented by AMR (although
we can build octree “coverings’ to include generation step); second, there is the
considerable complexity of AMR data structure and programming; third, most
“legacy’’ analysis codes are not equipped to take advantage of AMR, so the added
complexity and data structures would not be exploited. Nevertheless, it is clear that
AMR should be embedded in the grid-generation process and intimately tied to the
analysis step in future-generation complex analysis software for complex applica-
tions. This will probably occur in industry when market share is being taken by new
codes that offer these capabilities. In the national research sector it will occur when
these capabilities permit analysis of problems that cannot be addressed by existing
methods in a timely and economic way. This will come.

Some key issues. What AMR approaches and data structures are needed in
conjunction with the grid-generation problem and the range of analysis problems?
Derefinement involving reconstitution of subdivided cells is not as straightforward
as refinement when one considers error control, the treatment of moving boundaries,
and several other “details.”” Coarsening below the zero-level base grid raises an entire
slew of additional problems. There are several open issues related to, for instance,
the treatment of geometry representation during AMR, a-posteriori error estimates,
and error indicators.

3.4. Mesh Quality and Reliability

The goal in unstructured grid generation is to provide a quality grid capable
of representing the geometry and of providing the basis for a reliable accurate
simulation. In general, neither of the above is ensured. This is largely because the
industry does not insist on implementing appropriate tests to ensure that these
goals are met. For example, in the past it has been rare indeed for industrial grid
generators to include algorithms that have some form of quality assessment—
usually we are relieved to get a reasonable grid that does not have any visually
obvious problems such as unintended “holes’ or cell overlap. If obvious faults
arise during the analysis step, then the cause is frequently identified as “‘an in-
correct or inadequate grid.” In fact, the cell quality may even be excellent but the
mesh resolution inadequate to resolve layers or may lead to ‘‘false solutions.”
Smoothing to improve mesh quality is also important [4].

218 R. W. DOUGLASS ET AL.

Some key issues. Cell shape quality needs to be quantified, but the various
metrics currently in use are duplicative, insufficient, and not yet adequately analyzed
[5]. The effect of cell imperfection on the accuracy of a simulation is not yet resolved.
Directional grading refinement for more efficient simulation of a specific problem
violates the esthetic principles currently accepted as underlying a “‘good grid.”
A good grid for one problem will be a poor grid for another problem in the same
applications class. This consolidates the argument for AMR. The ideal grid from
an error analysis standpoint may be unsuitable, because of system conditioning,
for computations on a computer of a given finite precision. Libraries of error indi-
cators that diagnose possible cell quality problems and also provide indicators for
simulation solution quality are needed. A concerted effort in this direction would ap-
pear to have a strong payoff for the simulation community. Errors arise at all levels,
and their effect should be “‘appropriately’’ incorporated: we have the CAD error in
the geometric model description ecap; the geometrical error egeom in representing
the surface by the grid (e.g., rectilinear approximation of curves); the error asso-
ciated with the cell shape ¢, that may or may not be strongly tied to the analysis pro-
blem and data (e.g., surface fitting versus stress analysis near a crack tip); and the
error e, arising from conditioning and effects of finite-precision arithmetic.

3.5. Parallel Computation and Unstructured Grids

Unstructured and, especially, adaptive grids obviously pose some special
problems for parallel computation. Simply put, an initial unstructured grid may be
partitioned to balance the computational and communication load according to
some metric [6, 7], but subsequent refinement and coarsening will undoubtedly lead
to a strong imbalance. Codes such as PARMETIS and ZOLTAN [8] are being de-
veloped to address these issues, but there are significant problems yet to be resolved.
The problems are exacerbated when one considers coupled multiphysics applications
on different domains that share an interface, as is the case in fluid/solid interaction
problems.

Some key issues. The question of appropriate metrics for determining a par-
tition appears to be inextricably tied to the nature of the problem being analyzed,
the solution algorithm, and the computer hardware. Current approaches are based
exclusively on the grid geometry and are thereby limited. In view of the first issue,
the dynamic repartitioning code should have appropriate “rules” or a simple expert
system to guide the frequency of repartitioning and weights to guide the partitioning.
Neural nets trained for a given class of problems may be of some limited use here.
More generally, this will require an additional layer of complexity for the partitioner
to use the metrics of the first issue for the machine in question. The problem of gen-
erating the grid in parallel and then adaptively refining and dynamically repartition-
ing in parallel (while maintaining consistency of the data structure across processor
interfaces) is complex and must be addressed. For multiphysics applications with
loosely decoupled algorithms, different unstructured/adaptive grids may often be
advantageous. Strategies for projecting coupled field variables between grids (e.g.,
velocity from grid A to grid B and temperature concentrations from grid B back
to grid A). The point here is that certain properties of the solution such as cell-based
mass conservation may need to be preserved by the projection to satisfy solver sta-

CURRENT VIEWS ON GRID GENERATION 219

bility requirements [9]. While this is not specifically a grid-generation issue, it does
implicitly impact grid generation, especially for moving-mesh problems where re-
meshing and interpolation/projection are an integral part.

As a parting comment, as we promote more complex simulations on high-
resolution grids (and conditioning deteriorates), what confidence do we have in the
results computed for billions of cells on machines with very limited representations
of the real number system? Surely the experience of the 1960s with 32-bit machines
that led to the adoption of 64-bit arithmetic in the CDC systems must be revisited
here and appropriate actions taken at the hardware and algorithm levels.

4. A STATUS REPORT ON HEXAHEDRAL MESHING: CONTRIBUTED
BY D. WHITE

4.1. Introduction

While the increasing acceptance of tetrahedral meshes in a broad applications
space has led to a decreased demand for hexahedral meshes, many finite-element
applications still prefer hexes due to their inherent properties: increased accuracy and
space-filling efficiency. Still other codes require hexahedrons due to special physics or
solver requirements. The main impediment to using hexahedrons is the difficulty in
computing them. Automatic discretization of a domain into good-quality tetra-
hedrons is provable mathematically. In contrast, for hexahedral elements there is
only a proof that provides an assurance that all ball regions can be filled with to-
pologically hexahedral elements, but with no minimal guarantee of element quality.
Given the need to generate meshes containing only hexahedrons, and the general
lack of an acceptable automatic method to generate them, research is underway at
Sandia National Laboratories and elsewhere to complete a toolkit of meshing ap-
proaches or schemes to accomplish the task [10]. This section of the article discusses
the schemes commonly used to generate unstructured hexahedral meshes.

4.2. Automatic Schemes

Over the years, several algorithms have been proposed for automatically
meshing CAD shapes with hexahedral elements. The most common methods are
automatic decomposition, inside-out methods, advancing-front algorithms, and
tetrahedral splitting. Automatic decomposition techniques attempt to automatically
cut CAD parts into meshable regions similar to those in a typical manual meshing
process. Several algorithms have been developed to guide decomposition, including
the medial axis transformation (MAT) and feature-based decomposition. In MAT
approaches, branch points in the medial surface are bisected to decompose CAD
parts [11]. The resulting pieces are meshed with midpoint subdivision, sweeping,
or other hexahedral primitives [12]. Figure la shows an example of a part that is
meshed using automatic decomposition based on the medial axis transform and
midpoint subdivision to mesh the decomposed parts [11].

The feature-based decomposition approach searches for features in the solid and
attempts to dissect these from the model and use primitives or other meshing ap-
proaches to mesh the separate parts [13]. Both approaches to automatic decomposi-
tion run into problems when the resulting decompositions still contain parts that are

220 R. W. DOUGLASS ET AL.

(<)

Figure 1. Hexahedral meshing: (4) medial surface and resulting hexahedral mesh; (b) manual decom-
position of a 3-D object; (¢) volumes meshed with the multisweep and submap methods.

not meshable. Both approaches lack the freedom a user would have in decomposing a
part. An example of an assembly that requires creative decomposition is shown in
Figure 1b. The cylindrical side appendage makes the part unsweepable along the
major axis. As shown in the right of the figure, the smaller cylinder must have a sweep
path cut through the larger material, while not interfering with the interior parts.
Such decompositions rely on creative thinking, which is not captured by automatic
decomposition techniques. Unfortunately, it is difficult to predict where automatic
decomposition will work and where it will fail, making the algorithms less useful.
Inside-out methods start with inserting into a CAD model a mesh primitive such
as a box or cylinder. The mesh is then grown or pruned until it conforms to the
boundary of the solid. The nodes of the elements are relaxed to the surface of the
geometry, and clean-up operations such as pillowing [14] are performed to improve

CURRENT VIEWS ON GRID GENERATION 221

the quality of the mesh [14]. Given an unlimited element budget, this method is
robust for most geometry types. Unfortunately, this method has two important
drawbacks. First, the mesh on the boundaries of the surfaces can neither be predicted
nor prescribed. This means that matching of meshes across part boundaries is either
randomly achieved or is achieved by adding constraint equations. Second, the worst-
quality elements generally appear on the boundary, which for many applications is
where the highest-quality elements are required. There are many applications,
however, where single parts are analyzed and the boundaries are of little concern,
making this algorithm good for niche markets and as part of a toolkit of meshing
algorithms.

Three-dimensional advancing-front algorithms such as whisker weaving [16, 17]
and plastering [18] were once thought to be the solution to the hex-meshing problem.
Plastering, a geometric advancing-front algorithm, was found to leave ribbon re-
gions where no discernable hexahedral mesh could be inserted. Whisker weaving,
a topological dual-space advancing-front method, was found to close reliably, but
rarely resulted in meshes that were of a minimally acceptable quality. Despite their
shortcomings, the contribution of both algorithms to hexahedral meshing is sub-
stantial. New automatic mixed-element meshing resulted from the plastering algo-
rithm, where the void region is filled with pyramid elements on the interface and
tetrahedrons on the interior voids. Whisker weaving inspired additional work such
as the all-hex interface template, the geode [19]; and in other, more restricted uses of
the algorithm [20].

Tetrahedral splitting is perhaps the most reliable and general form of automatic
hexahedral meshing and is also the simplest. It takes the tetrahedral mesh of an
object, which can be obtained automatically, and splits each tetrahedron into four
hexahedrons by placing a node at the center of each triangle, edge, and tetrahedron
and reconnecting the new edges formed by these nodes. The result is a fully con-
forming hexahedral mesh. The drawback to this meshing scheme is that its quality is
usually not what is desired; even the best elements, those inside an equilateral tet-
rahedron, are of marginal quality. At worst, where slivers in the tetrahedral mesh
may exist, the elements can be of extremely poor quality. Similar to the inside-out
algorithm, for some applications this may be acceptable and provides an automatic
approach to hexahedral meshing, and it is valuable in a niche application or as part
of a toolkit.

4.3. Automated Methods

In the absence of a satisfactory high-quality automatic meshing scheme, many
researchers have turned to improving the manual methods of generating hexahedral
elements. Some of these improvements have come through extending sweeping and
primitive algorithms, and development of automation control algorithms. In a
manual approach a user will decompose a part into pieces that can be meshed with
primitives or by sweeping. Mesh primitives are a set of predesigned meshes for ty-
pical or common shapes such as squares, triangles, and circles in two dimensions and
cubes, tetrahedrons, and spheres in three dimensions. Sweeping essentially is an
extension of a cylinder primitive in which the top circular surface mesh is extruded
through the volume as hexahedrons. Sweeping requires that the “linking”” surfaces or

222 R. W. DOUGLASS ET AL.

sidewalls of the sweep axis be meshed with a structured or regular meshing scheme
such as mapping [21].

Decomposing all the parts into primitives or sweeps is tedious and unnecessary.
Preprocessing steps to perform a minimal amount of “‘pseudo”-decomposition au-
tomatically were added to extend sweeping and mapping. The mapping algorithm
was extended to submapping, which uses virtual subdivision based on the boundary
mesh to decompose a part into mappable subregions [22]. Sweeping was first ex-
tended to “‘pick up’’ additional source faces in the sweep as it progressed through the
axis. The algorithm was then further extended to not only pick up faces but also
terminate them as the sweep traveled along the axis [23]. This technique is referred
to as “multisweep’” or ““Coopering.” Examples showing the meshes produced by
multisweep and submapping are shown in Figure lc.

Primitives and sweeping often rely on user intervention to prescribe exact
boundary intervals, surface meshes, and sweep directions. When meshing large as-
semblies of parts, managing and entering this data can become overwhelming, even
for experienced users. Automation for controlling and relaxing the amount of user-
supplied data has been another area of research in hexahedral meshing. Two algo-
rithms that have substantially reduced this problem are automatic scheme selection
and automatic interval assignment. Automatic scheme selection uses a sweepability
proof to detect shapes that can be meshed with sweeping and other primitives [24].
The algorithm automatically assigns the proper surface schemes and assigns proper
sweep directions. The automatic interval assignment algorithm solves a system of
linear, integer constraint equations to provide proper edge intervals for meshing [25].
The constraints are based specifically on the requirements of the meshing algorithms
that are to be used. Both automatic scheme selection and interval assignment greatly
reduce the amount of data input required by sweeping and mesh primitives.

5. GENERAL GRID GENERATION: OCTREE METHODS AND
MESH OPTIMIZATION: CONTRIBUTED BY G. A. HANSEN WITH
W. R. OAKES, R. P. WEAVER, AND M. L. GITTINGS

5.1. Introduction

Mesh generation and mesh dynamics are important topics for the solution of
large multidimensional problems in computational heat transfer (CHT). Advances
in CHT methodology, along with the recent availability of powerful computational
platforms, have made it feasible to consider detailed calculations on geometrically
complex domains in two and three dimensions. Furthermore, the mesh must capture
both the desired geometric and transient solution features within the computational
domain. For problems with complex transient physics interacting with intricate
geometric objects such as combustion modeling near a burner, traditional structured
and unstructured mesh-generation approaches are often intractable. Generation of
an appropriate mesh to support calculations of this complexity is a challenging,
multidisciplinary problem; it is currently often more time and labor consuming to
create the supporting mesh than to define and perform the desired simulation.

This discussion explores two topics in mesh generation: octree mesh generation
and mesh optimization. The adaptive octree mesh-generation approach seeks a
compromise between traditional mesh quality criteria and the ability to generate

CURRENT VIEWS ON GRID GENERATION 223

automatically a mesh that captures relevant geometric and solution detail. The
octree approach is statically and dynamically effective for arbitrarily complex pro-
blems, but often does not provide the best mesh for a typical simulation application
near geometric boundaries. The second topic presented in this discussion examines
a less flexible but more accurate approach (for a given cell size) of optimizing a
traditional boundary-conformal mesh by optimizing the location of the mesh node
points based on solution and geometric criteria. This adaptive method yields a high-
quality mesh within certain constraints. This approach is less effective for large-
displacement problems, where either topological refinement or mesh reconnection is
better suited for the transient dynamics.

5.2. Adaptive Octree Mesh Generation

The adaptive octree mesh generation method seeks a compromise between
mesh quality and the ability to discretize domains containing complex geometry
in an automatic manner [26]. In practice, it is often the case that the generation of a
typical structured or unstructured hexahedral mesh tends to be a very detailed,
manual process for complex problems. For many problems, the geometry contained
within the domain must be significantly simplified prior to mesh generation, both to
facilitate the completion of the mesh in a reasonable period of time and to result in a
mesh of acceptable quality for the desired simulation. If the target is a tetrahedral
mesh, the mesh-generation process is more tractable. However, many applications
cannot use tetrahedral elements effectively, and a significant amount of manual in-
teraction is still necessary to develop such a mesh for a complex model.

When the simulation application has the flexibility to consider a nonconformal
subdivision refinement strategy, is tolerant to nonaligned flow fields, and has the
ability to resolve geometric boundaries explicitly, the octree mesh-generation method
is a very effective solution to the trade-off between mesh-generation time and domain
complexity.

The input data to the octree algorithm are straightforward, consisting of the
physical extent of the computational domain and the objects contained within (e.g.,
Figure 2a). The minimum and maximum spatial resolutions of the mesh are specified
by the user. Optionally, the user may supply initial conditions, guiding the algorithm
to provide additional refinement in areas where it is needed to resolve solution length
scales. This solution refinement condition may also be calculated within the gen-
eration application if it contains the governing equations; a pseudo-time step of the
discrete system can be performed to calculate a metric that indicates where addi-
tional refinement is needed to resolve initial length scales present within the domain.
Given the above input, the mesh-generation process generally proceeds to comple-
tion without any additional user input or guidance.

Given the input data, the octree mesh-generation method operates using a
divide-and-conquer strategy. The basic approach begins with a discretization of the
domain at the minimum level of refinement specified by the user, ignoring any
geometry within the domain. Typically, this initial discretization is very coarse, and it
is called the level-0 mesh (Figure 2a). Alternatively, better results may be obtained by
boundary-fitting the level-0 mesh to bulk geometric features contained within the
computational domain (ignoring those features whose size or impact metric is less

224 R. W. DOUGLASS ET AL.

Figure 2. Examples of octree/quadtree mesh refinement methods and mesh optimization results. (a) A
three-level geometric quadtree algorithm applied to the domain geometry using a simple Cartesian level-0
mesh. (b) An octree mesh for a reciprocating engine assembly. (¢) A Cartesian initial mesh adapted to the
solution of an arc-tangent hill problem. Darker colors indicate a larger magnitude of solution error.
(d) Three-dimensional adaptation: a constant mesh metric composed with an error metric derived from the
temperature of a point combustion problem.

than the spatial resolution of the level-0 mesh). The boundary-fitted approach will
provide a more optimal global mesh, but it requires significant manual effort to
obtain. The remainder of this discussion will assume that the first approach is used to
create the level-0 mesh. With the base level-0 mesh, the adaptive octree approach
adds spatial refinement to areas that require more discretization to capture either
intricate geometric detail or small solution length scales. The refinement strategy is
based on a spatial subdivision of those mesh cells that can benefit from additional
discretization. The algorithm loops over the level-0 mesh, bisecting each candidate
cell in each of the coordinate directions. Geometric octree refinement may be re-
duced to a spatial query operation as each cell is inspected, in turn, to determine if
any geometric surfaces are contained within it. If this is the case, the cell is bisected.
This algorithm may be applied recursively to achieve any measure of refinement
necessary for the problem. Figure 2a shows an example of a three-level geometric

CURRENT VIEWS ON GRID GENERATION 225

quadtree algorithm applied to the domain geometry using a simple Cartesian level-0
mesh.

To reiterate, the strength of the octree method lies in its ability to capture a
disparity in spatial length scales in an automatic fashion. If the spatial query algo-
rithm is developed in a general manner, the dimensionality and geometric complexity
of the desired problem may be captured automatically, given simple input para-
meters. Figure 25 illustrates a cutaway diagram of an octree mesh generated on a
reciprocating engine assembly.

These examples illustrate the flexibility of the octree approach in addressing
geometric complexity in an automatic fashion. Adding solution adaptivity to the
octree algorithm is also straightforward [27, 28]. The input data requirements,
generating algorithm, and level of automation need not change as geometric and
solution complexity increases.

5.3. Adaptive Mesh Optimization

A second method of dynamically optimizing a mesh to accommodate evolving
solution details is to move mesh node points physically to more optimal locations.
Traditionally, this form of mesh optimization involves a trade-off between the level
of local adaptivity that may be tolerated without sacrificing the geometric integrity
and smoothness of the mesh. Many approaches to providing solution adaptivity are
derived by formulating an optimization problem targeted at minimizing an error
metric over the mesh. These approaches may result in an overemphasis of solution
criteria with respect to mesh geometry, resulting in a localized reduction in cell
geometric quality. Ideally, one desires to couple the minimization of solution error
with a system that optimizes the solution qualities of the mesh to provide adaptivity
while maintaining a measure of mesh geometric quality. Consider the elliptic grid
generation system, where x are the coordinates of the grid points in Cartesian 2-
space [29, 30]:

80(Xee + PxXe) + g11 (X + 0%,)) = 0

where
po X Xe XeXpn_ 1), (), N 1(82),
gu gn 2 gn g2 2 g»
0= %o ¥m_ XnXe 1(g2), (812 N 1(gi),
g2 gu 2 g» g 2 gn

If one considers the spatial metric terms g;; as prescriptive terms, it is possible
to adjust the geometric characteristics of the mesh. Furthermore, g;; prescribes the
mesh spacing in the first coordinate direction, g the second, and gi, is a measure of
local grid orthogonality. If the metric surface g; is expressed as a composition of
both mesh spatial information and a solution error metric, the composite metric will
prescribe a mesh spacing that reflects the geometric characteristics of the previous
mesh adjusted by the solution data. For example, Figure 2¢ shows the results of

226 R. W. DOUGLASS ET AL.

combining a spatially constant initial mesh metric with an error metric derived from
a hyperbolic tangent function.

This figure illustrates the actual physical mesh produced for this 2-D example
problem. Visually, the darker cells in the diagram correspond to the physical region
where the simulation error is higher. Detailed study of this result reveals an inter-
esting interaction between the optimization of the mesh geometry and the adaptation
of the mesh to the solution feature, particularly at points 45° from the horizontal and
vertical axes. In this region, the requirements of the geometric problem and error
problem are orthogonal; the g, term of the geometric solution is driving the cell-
included angles to 90°, and the solution g1, term is seeking included angles of 0° and
180°. Clearly, the incorporation of solution adaptation entails a compromise in
traditional geometric quality criteria if the mesh topology cannot be modified ap-
propriately. Figure 2d reveals similar behavior on a hypothetical 3-D point com-
bustion problem; the coloration indicates the temperature of regions of the sphere
as the flame propagates.

This dynamic adaptation approach appears very promising in application.
However, there are two main areas of development needed before the approach is
fully effective. The relative weight of the solution and geometric metrics on the
composite problem are controlled by a user-specified parameter; the adaptation
weight is problem specific and is a transient function. It may be possible to calculate
this weighting function implicitly by seeking a functional convergence that distributes
the solution error equally across the mesh. The approach and mechanics for achieving
this result is an open topic. Second, the solution error is likely sensitive to the local
topology of the mesh (the relative alignment of the mesh with the primary solution
propagation direction influences the local error). Work remains both to quantify this
error and to develop the mechanics to locally disconnect and reconnect mesh edges
(and faces) to adapt the mesh graph dynamically to the transient solution.

6. ISSUES RELATED TO VISCOUS GRIDS: CONTRIBUTED
BY Y. KALLINDERIS

6.1. Introduction

There is an ever-increasing demand to perform flow simulations that in-
corporate the complete details of geometry as well as sophisticated field physics. The
success of numerical flow simulators depends to a great extent on the computational
grid that is employed. As a consequence, grid generation has become a task of
primary importance. Structured meshes consisting of blocks of hexahedra and un-
structured grids consisting of tetrahedra have been the traditional means of dis-
cretizing 3-D flow domains. Hybrid grids usually consist of prisms and tetrahedra in
three dimensions, and correspondingly quadrilaterals and triangles in two-dimen-
sions. Layers of prisms are employed to resolve boundary layers and wakes, while
tetrahedra cover the rest of the domain.

There are a number of issues to be addressed when dealing with turbulent flow
simulations involving complex geometries. These considerations include: (1) the
different orientation of the viscous flow features, (2) the disparate length scales that
need to be resolved within the same domain, (3) the requirements of the Navier—
Stokes solvers.

CURRENT VIEWS ON GRID GENERATION 227

Feature orientation. The main features that are encountered in flow fields
include boundary layers, wakes, shock waves, and vortices. These features have
different orientations, making generation of a single grid that conforms to them
very difficult. In addition, the mesh has to follow the boundaries of the computa-
tional domain. A hybrid grid which combines elements of differing orientation
appears to be much more flexible in conforming to the flow features. The prisms
are assigned the task of capturing the features that are following the body surface,
while the tetrahedra are used for the features that are away from the boundaries
(e.g., shocks and vortices).

Disparate length scales. The different spatial scales encountered in viscous
flows vary by orders of magnitude from each other, scales imposed by the flow fea-
tures and geometry. The laminar sublayer requires placement of grid points at dis-
tances away from the wall of the order of one-millionth the scale of the geometry,
while the points at the far field may be at a distance of order 1 from one another.
Shock waves and vortices have very different scales as well. Furthermore, the details
of the geometry frequently impose scales on the grid generator. The gaps between
the main wing and the flap and the tip clearances in turbomachinery geometries
are typical examples of small scales.

The issue becomes even more complex when taking into account the direc-
tionality of the different scales. The small scale required in the boundary layers is in
the direction normal to the surface, while much larger sizes of the mesh are sufficient
in the lateral directions. Similar directionality also exists in wakes and shock waves.
This directionality leads to the issue of generating high-aspect-ratio grid cells.
Generation of thin prismatic grids for the boundary layers and wakes has the ad-
vantage of being feasible, fast, and resulting in a smaller number of elements com-
pared to tetrahedra. On the other hand, the isotropic nature of tetrahedra appears to
be appropriate for the vortices and other regions of the domain where the flow is
changing equally in all directions.

Navier—Stokes solver requirements. Navier—Stokes solvers place strict re-
quirements on the mesh. Accuracy and stability of the numerical methods depend
crucially on the local resolution and the uniformity of the grid. Smooth transition
of element sizes at the prism/tetrahedra interface is important for accuracy and
robustness of Navier—Stokes numerical methods. Furthermore, computing re-
sources, in terms of CPU time and memory storage, are dictated by the number
of grid elements.

Employment of the thin semistructured prismatic elements in the regions of
shear layers results in sufficient accuracy with significantly reduced computing
resources compared to all-tetrahedral meshes. The flow field on the body surface
usually contains regions of strong flow directionality, such as the leading and trailing
edges of a wing. Generation of anisotropic surface grid elements results in significant
savings in the number of elements without sacrificing accuracy.

6.2. Traditional Types of Grids in Three Dimensions

Structured meshes consisting of hexahedra and unstructured meshes con-
sisting of tetrahedra have been the traditional means of discretizing 3-D Eulerian

228 R. W. DOUGLASS ET AL.

flow domains. Both approaches have been challenged in recent years, as applica-
tions move to large-scale turbulent flows with very complex geometries. The two
main kinds of structured meshes are multiblock and overset grids, which are
generated with elliptic, hyperbolic, or interpolation types of methods. Unstructured
tetrahedral meshes are generated via the advancing front, Delaunay, and octree
types of approaches.

Structured multiblock meshes. In the multiblock approach, the computa-
tional domain is divided into several subdomains (blocks). Separate hexahedral grids
are then generated within each block. The grid lines at the block interfaces may be
continuous (composite grids) or discontinuous (patched). These grids have the sim-
plicity of their inherent structure, resulting in simple data structures that do not re-
quire a lot of computer memory. Furthermore, implementation of the corresponding
numerical solvers and flow visualization tools are relatively simple.

In the case of complex geometries, a large number of blocks needs to be defined
by the user. Definition of the blocks and their interfaces becomes increasingly dif-
ficult and time consuming as the number of blocks increases. Furthermore, an ex-
perienced user is needed to perform this task. Steps to remove the user from the
process and to increase automation have been taken in the past few years via ap-
propriate graphical user interfaces and the development of automatic blocking
procedures.

Overset grids. The difficulties associated with interfacing a large number of
blocks of different orientation and sizes led to the development of overlapping struc-
tured grids. This method is also known as chimera mesh generation. Structured grids
are generated independently for each component of a complex geometry, and the
grids are overset on each other. An example of the flexibility of the method is its em-
ployment for simulation of the flow around the Space Shuttle. A rather complicated
data structure is required to facilitate the transfer of information between the differ-
ent overlapping meshes. The generation of the grids is not entirely independent of
each other, since overlapping of meshes of very different resolution should be
avoided due to the large interpolation errors. Another complication with this ap-
proach is maintenance of conservation of the flow quantities in the regions of over-
lapping, which is crucial to computation of flows with shock waves.

Unstructured grids. A radical alternative to a structured mesh is the use of
tetrahedra. Tetrahedral grids provide flexibility in 3-D grid generation, since they
can cover complicated topologies more easily than the hexahedral meshes. The lack
of structure allows complex geometries to be discretized in a single block. The three
main approaches of unstructured grid generation are Delaunay methods, advancing-
front methods, and octree-based techniques.

Tetrahedral grid generators have focused on producing valid grids for complex
domains. This approach has been quite successful for the case of inviscid flow
simulations described by the Euler equations. However, the demands on level of
accuracy and computing resources of Navier—Stokes computations have been
enormous for tetrahedral element-based solvers. Turbulent flow simulations around
a single wing can easily employ 10 million tetrahedra and on the order of a gigaword
of memory. Also, generation of tetrahedral cells for boundary layers is difficult.
In these regions the main solution gradients occur in the direction normal to the

CURRENT VIEWS ON GRID GENERATION 229

surface, which requires high-aspect-ratio cells. It appears that structured grids are
superior in capturing the directionality of the flow field over such viscous regions.

Cartesian grids. The meshes we have seen so far follow the geometry of the
surfaces involved. A radical alternative to body-conforming meshes are the so-called
Cartesian grids. These are generated ignoring the presence of the bodies and are
aligned with the Cartesian coordinates. A master hexahedron encompassing the
body is recursively subdivided to create hexahedral elements that become progres-
sively smaller as the surface is approached. Generation is simple and automatic.
The hexahedra can be further divided adaptively based on the curvature of the sur-
face and/or the solution gradients. Basically, grid generation is not an issue for very
complex geometries.

The most serious problem of the Cartesian approach is the poor quality of the
mesh close to the surface. The hexahedra intersect the boundaries in a random
fashion, and control of the shapes and sizes of these elements is difficult. The ele-
ments are cut by the boundaries in several different ways, requiring special im-
plementation of the boundary conditions. Special care also is required in order to
avoid the small time steps that are normally required to integrate extremely small
elements that are cut by the boundaries. The method has been applied to simulate
primarily potential and inviscid flows. Viscous flow simulations are difficult to per-
form with Cartesian grids.

6.3. Mixed-Element Grids

Employment of a single type of grid appears to be insufficient in resolving 3-D
viscous flow domains accurately and efficiently. A relatively new approach has been
the use of hybrid meshes that provide considerable flexibility. Hybrid grids consisting
of prisms and/or hexahedra as well as tetrahedra combine the advantages of both
structured and unstructured approaches. A typical hybrid grid generator consists of
two major parts: (1) the prisms or hexahedra generator, an algebraic, marching-type
technique, and (2) the tetrahedra generator.

The structured marching method for prisms and hexahedra. An unstruc-
tured triangular grid is employed as the starting surface to generate a prismatic mesh.
This grid, covering the body surface, is marched away from the body in distinct
steps, resulting in generation of semistructured prismatic layers in the marching di-
rection. If the surface is discretized with quadrilaterals, then a hexahedral mesh will
be created with the same marching method.

The process can be visualized as a gradual inflation of the body’s volume. A
major issue with marching methods is to avoid crossing of the grid lines. There are
three main aspects to the algebraic grid generation process: (1) determination of the
directions along which the nodes will march (marching vectors), (2) determination of
the distance by which the nodes will march along the marching vectors, and (3)
smoothing operations on positioning of the nodes on the new layer.

Each node on the marching surface is advanced along a marching vector. The
marching direction is based on the node manifold, which consists of the group of
faces sharing the node to be marched. The primary criterion to be satisfied when
marching is that the new node should be visible from all the faces on the manifold

230 R. W. DOUGLASS ET AL.

(the visibility condition). Determination of marching distances is based on the
characteristic angle of the manifold of each node to be marched. The average
marching step for each layer is computed based on a user-specified initial marching
step on the body surface and a stretching factor.

The initial marching vectors are the normal vectors. However, this may not
provide a valid grid since overlapping may occur, especially in concave regions of
the grid surface with closely spaced nodes. To prevent overlapping, the directions
of the marching vectors must be altered. Altering of the directions should not end
abruptly in the local neighborhood of the nodes involved, since this may cause
overlapping in nearby regions. A gradual reduction of the magnitude of the change
in the vector direction is accomplished via a number of weighted Laplacian-type
smoothing operations over the marching vectors of all nodes. A similar procedure
is employed for the smoothing of the marching steps to eliminate abrupt changes
in cell sizes.

Typical Navier—Stokes integration methods impose restrictions on the
spacing of the points along the marching lines and on the smoothness of these
lines. In other words, the prismatic grid should not be excessively stretched or
skewed. Constraints are imposed on the lateral and normal distribution of
marching step sizes and the deviation of the direction of the marching vectors
from one layer to the next. The above constraints reduce ‘kinks” in the
marching vector directions as well as abrupt changes in step sizes, thus providing
a smooth mesh suitable for viscous flow computations. Since the visibility cri-
terion is the ultimate test for the validity of the mesh, this criterion is the final
constraint that is imposed on the grid.

A mixed octree/advancing-front method for tetrahedra. A combined oc-
tree/advancing-front method is used to generate the unstructured grid. The advan-
cing-front type of methods require specification by the user of the distribution of
three parameters over the entire domain to be discretized. These field functions
are (1) node spacing, (2) grid stretching, and (3) direction of the stretching. Using
the octree /advancing-front method, these parameters do not need to be specified. In-
stead, they are determined via an automatically generated octree.

The octree is constructed via a divide-and-conquer process starting with a
master hexahedron that contains the body. This hexahedron is recursively sub-
divided into eight smaller hexahedra called octants. Any octant that intersects the
body is a boundary octant and is subdivided further (inward refinement). The
subdivision of a boundary octant ceases when its size matches a local length scale.
The choice of the local length scale depends on the particular application of the
octree. The length scale can be chosen to be local prism thickness, surface edge
length, or surface curvature. For hybrid prismatic/tetrahedral mesh generation,
the local length scale is simply the local thickness of the last prismatic layer. This
will ensure that the size of the tetrahedra in the direction normal to the outer
prismatic surface is the same as the height of the neighboring prisms. This smooth
transition in size from the prisms to the tetrahedra is important for accuracy of
the numerical method.

Two important features of the octree/advancing-front method are its ability to
match disparate length scales and its geometry independence. The octree is able to
ensure a smooth size transition over the large range of length scales present in a

CURRENT VIEWS ON GRID GENERATION 231

viscous mesh. The octree may be used for many different types of geometries with
minimal user interaction.

7. NEXT-GENERATION LARGE-SCALE AEROSPACE SIMULATIONS
ON UNSTRUCTURED GRIDS: CONTRIBUTED BY N. WEATHERILL
WITH O. HASSAN, K. MORGAN, J. W. JONES, B. G. LARWOOD,

AND K. SORENSON

7.1. Introduction

The advent of the vector supercomputers of the 1970s, of which the CRAY 1S
is perhaps the most famous, had a major influence on scientific simulation. The
technology acted as a catalyst for new algorithms that were able to address emerging
and challenging applications. In the last few years, the next generation of computers
has emerged in the form of massively parallel computer hardware. Again there is an
opportunity for the simulation community to utilize this new computer power to
open new avenues for research and to attempt real-world simulations that in the past
were out of the range of all but a handful of extremely expensive computers. In the
areas of computational aerodynamics and electromagnetics (focused primarily on
radar cross section), it is clear from our estimates (see Figures 3a and 3b) that very
large computational grids will be required for future simulations. However, with
parallel computer platforms and suitable software, the next generation of simula-
tions is feasible (see Figure 3c).

Some years ago, therefore, we embarked on a long-term research program to
enhance our software capability in computational fluid dynamics (CFD) and
computational electromagnetics (CEM) so as to provide the necessary basis for the
next generation of simulations. It was deemed necessary to parallelize all the different
steps in the computational cycle, from geometry input to unstructured mesh gen-
eration, to simulation, to visualization and data mining, and on to mesh adaptation.
To aid in the usability of such software a parallel simulation user environment

LogNoN)
A LES

11— []

—

9

Turbulent
8- L
Laminar
T ¢
Euler

sl @
»
>

Physics Complexity

(a)

Figure 3. (a) Mesh requirements for computational fluid dynamics for a complete aircraft.

232 R. W. DOUGLASS ET AL.

6l ! , Frequency (GHz)
]]] >

L
0.25 0.501.0 2.0 40 8.0

(b)

Number of

Processors CEM:

Turblhlentm 1GHz

1024E\ \ Wady
256 N AN %:
64 250MHz
aminar CEM:SOOMH
N
16 Unsteady o \K]
\guler \m

0.075 0.25 1 4 16 64

/
A

4 Tuler
1 r

CPU Time

(c)

Figure 3. (b) Mesh requirements for the simulation of electromagnetic scatter from an aircraft 20 m in
length (NoN= number of nodes). (¢) Estimated computing time in hours required for simulations in the
next five years.

(PSUEII), within which all the parallel modules were embedded, was also developed.
Details of some of the developments and performance of these modules have been
reported previously [31-35]. However, a very brief summary will be given.

CURRENT VIEWS ON GRID GENERATION 233

Grid generation. Following a surface triangulation of the outer boundary of
the domain, a geometric decomposition is constructed which subdivides the domain
into an arbitrary number of partitions. The interdomain boundaries are meshed
using a 2-D unstructured mesh generator and the closed subdomains are then farmed
out to individual processors on which the volume mesh of tetrahedra is constructed.
Communication between the manager and the worker processors is performed using
MPI (the Message Passing Interface). To improve computational efficiency, dynamic
load balancing is used.

Simulation. The solver technology used for both fluids (Euler or Navier—
Stokes equation) and electromagnetics (Maxwell’s equations) is finite element based
with explicit time integration. The basic data structure used in the solvers is edge
based, where the unknown variables are defined at nodes of the mesh. Communica-
tion between neighbor subdomains is defined so that all operations can be performed
along edges. Edges are not duplicated, but common interface boundary nodes
are stored in neighboring subdomains. MPI is used for communication between
processors.

Adaptation. Given a solution on an initial mesh, /-refinement can be em-
ployed to provide additional resolution where indicated by an error estimator. Mesh
refinement is applied in the different subdomains, with care taken to ensure consis-
tency of the grid should refinement be required along interface boundaries. Nodes
added on the configuration geometry are taken back to the original surface, requir-
ing details of the gecometry to be sent to the different processors.

Visualization. The basis of the parallel visualization toolkit is for all the search-
ing and computationall y intensive work to be performed on the processors and only the
data required for rendering sent to the workstation for visual display. A set of library
routines has been developed to handle the communication. Fast search routines oper-
ating between subdomains, and hence held on different processors, have been developed
that utilize octree data structures. Given geometry, the visualization, meshing, simula-
tion, adaptation, and postprocessin g are all achieved in parallel without a requirement,
at any stage in the cycle, to bring together, within one domain, the simulation data.
As such, it is our premise that no computational bottlenecks are created. Given this
development, the new software and hardware technology can be fully exercised.

7.2. Engineering Simulation

As an example of a large-scale simulation, the propagation of a single wave
through an engine duct is considered (see Figure 4). Maxwell’s equations, written in
the time domain, are solved using an explicit time integration procedure. The di-
mensions of the duct are 6.2 m by 0.45 m by 0.45 m. The incident wave is 3 cm, which
gives a frequency of 10 GHz. If it is assumed that 10 grid nodes are required per
wavelength, then the number of nodes required in the mesh is 210 x 15 x 15 x 103, or
approximately 47 million nodes. To generate a uniform mesh with the required size,
background spacing was set at 3 units. The details of the mesh generated are given in
Table 1. The time required to simulate one cycle of the wave, using 32 processors, was
8 h. To complete the simulation on a machine with 1024 processors would take ap-
proximately 4.5 days. The mesh and solution data were then passed back into the

*9[0A0 QuO
1913e s)nsai (q) ssuonnied gz (v) :3onp 20vdsoIor UL JO UONBMUWIS SOIUBYIAWOI)OJ[S [euoneindwos € 10j uonnjos pue uonisoduwoossp p[rered ayi jo s[reld “p 2msig

@ (®)

234

CURRENT VIEWS ON GRID GENERATION 235

Table 1. Statistics of the unstructured mesh used in the computation shown in Figure 4

Geometry

No. of surfaces 94

No. of curves 188
Mesh

No. of partitions 128

No. of processors (R12,000 400 MHz) 24
Surface mesh

No. of nodes 1,834,328

No. of triangles 3,668,652

Time for generation 1.6 h

Volume mesh

No. of nodes 44,078,548
No. of tetrahedra 236,356,076
Size of volume mesh file 5.1 GB
Size of communication data file 0.23 GB
Time for generation 18 h

PSUE II and rendered using the parallel visualization technology to produce Figures
4a and 4b. Figure 4a shows the mesh elements colored by the partition in which they
reside, and Figure 4b shows the wave propagation after one cycle.

8. SUMMARY

We have provided only a brief glimpse into the world of grid generation as it
stands today. There are many sources of additional information concerning grid
generation and associated issues. A very small sampling of these might include re-
ference books such as the Handbook of Grid Generation [36], textbooks by Carey [37],
Knupp [38], and Frey and George [39], and research articles or summaries as
prepared by Teng and Wong [1], for example. A ready source of introductory ma-
terial plus a host of additional World Wide Web links for further information can be
found at Websites such as those of Steve Owen for the Meshing Research Corner
at http://www.andrew.cmu.edu/user/sowen/mesh.html, of Robert Schneiders at
http://www-users.informatik.rwthaachen.de/ ~roberts/meshgeneration.html, of Da-
vid Epstein for Geometry in Action at http://www.ics.uci.edu/~epstein/geom.html,
and at Nina Amenta’s Directory of Computational Geometry Software at http://
www.geom.umn.edu/software/cglist.

The contributors to this article wish to extend our thanks to Drs. Graham de
Vahl Davis and Eddie Leonardi, organizers of CHT 01, for graciously providing the
encouragement to proceed and the time in the full schedule for this panel discussion.
It was our pleasure to participate in it.

REFERENCES

1. S.-H. Teng and C. W. Wong, Unstructured Mesh Generation: Theory, Practice, and
Perspectives, Int. J. Comput. Geom. Appl., vol. 10, pp. 227-266, 2000.

http://www.andrew.cmu.edu/user/sowen/mesh.html
http://www-users.informatik.rwthaachen.de/%7Eroberts/meshgeneration.html
http://www.ics.uci.edu/%7Eepstein/geom.html
http://www.geom.umn.edu/software/cglist
http://www.geom.umn.edu/software/cglist

236 R. W. DOUGLASS ET AL.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. G. F. Carey, A Mesh Refinement Scheme for Finite Element Computations, J. Comput.
Meth. Appl. Mech. Eng., vol. 7, pp. 93—105, 1976.

G. F. Carey, Keynote Lecture, Adaptive Techniques and Related Issues in Finite Element
Modeling of Heat and Fluid Flow, ICHMT Symposium (CHT’01), Advances in Com-
putational Heat Transfer, Palm Cove, Cairns, Queensland, Australia, May 2001.

P. Knupp, Achieving Finite Element Mesh Quality via Optimization of the Jacobian
Matrix Norm and Associated Quantities. Part II—A Framework for Volume Mesh Op-
timization and the Condition Number of the Jacobian Matrix, Int. J. Numer. Meth. Eng.,
vol. 48, pp. 1165-1185, July 2000.

S. Igbal and G. F. Carey, Neural Nets for Mesh Assessment, TICAM Report #02-02,
University of Texas at Austin, Austin, TX, January 2002.

B. Hendricksen and R. Leland, Multidimensional Spectral Load Balancing, Tech. Rep.,
SAND 93-0074, Sandia Natl. Lab., January 1993.

G. Karypis and V. Kumar, A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs, SIAM J. Sci. Comput., vol. 20, pp. 359-392, 1998.

B. Hendrickson and K. Devine, Dynamic Load Balancing in Computational Mechanics,
Comput. Meth. Appl. Mech. Eng., vol. 184, pp. 485500, 2000.

G. F. Carey, G. Bicken, V. Carey, C. Berger, and J. Sanchez, Locally Constrained Pro-
jections, Int. J. Numer. Meth. Eng., vol. 50, pp. 549-577, 2001.

S. A. Mitchell, Project Leader of the CUBIT Mesh Generation Toolkit, http://endo.
sandia.gov/cubit.

C. G. Armstrong, D. J. Robinson, R. M. McKeag, T. S. Li, S. J. Bridgett, R. J. Donaghy,
and C. A. McGleenan, Medials for Meshing and More, Proc. 4th Int. Meshing Round-
table, SAND95-2130, pp. 277-288, October 1995.

A. Sheffer, M. Etzion, A. Rappoport, and M. Bercovier, Hexahedral Mesh Generation
Using the Embedded Voronoi Graph, Proc. 7th Int. Meshing Roundtable, SAND98-2250,
pp. 347-364, October 1998.

Y. Lu, R. Gadh, and T. J. Tautges, Volume Decomposition and Feature Recognition for
Hexahedral Mesh Generation, Proc. 8th Int. Meshing Roundtable, SANID99-2288,
pp. 269-280, October 1999.

S. A. Mitchell and T. J. Tautges, Pillowing Doublets: Refining a Mesh to Ensure that
Faces Share at Most One Edge, Proc. 4th Int. Meshing Roundtable, SAND95-2130,
pp. 231-240, October 1995.

R. Schneiders, R. Schindler, and F. Weiler, Octree-Based Generation of Hexahedral
Element Meshes, Proc. 5th Int. Meshing Roundtable, SAND96-2301, pp. 205-216, October
1996.

T. J. Tautges, T. Blacker, and S. A. Mitchell, The Whisker Weaving Algorithm: A
Connectivity-Based Method for Constructing All-Hexahedral Finite Element Meshes,
Int. J. Numer. Meth. Eng., vol. 39, pp. 3327-3349, 1996.

N. T. Folwell and S. A. Mitchell, Reliable Whisker Weaving via Curve Contraction, Proc.
7th Int. Meshing Roundtable, SAND98-2250, pp. 365-378, October 1998.

T. D. Blacker and R. J. Meyers, Seams and Wedges in Plastering: A 3D Hexahedral Mesh
Generation Algorithm, Eng. Comput., vol. 2, pp. 83-93, 1993.

S. A. Mitchell, The All-Hex Geode-Template for Conforming a Diced Tetrahedral Mesh
to Any Diced Hexahedral Mesh, Proc. 7th Int. Meshing Roundtable, SAND98-2250,
pp. 295-305, October 1998.

M. Muller-Hannemann, Hexahedral Mesh Generation by Successive Dual Cycle Elim-
ination, Proc. 7th Int. Meshing Roundtable, SAND98-2250, pp. 365-378, October 1998.
M. Whitely, D. R. White, S. E. Benzley, and T. Blacker, Two and Three-Quarter Di-
mensional Meshing Facilitators, Eng. Comput., vol. 12, pp. 155-167, December 1996.

http://endo.sandia.gov/cubit
http://endo.sandia.gov/cubit
http://lucia.catchword.com/nw=1/rpsv/0045-7825^282000^29184L.485[aid=2197723]

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

CURRENT VIEWS ON GRID GENERATION 237

D. R. White, L. Mingwu, S. E. Benzley, and G. D. Sjaardema, Automated Hexahedral
Mesh Generation by Virtual Decomposition, Proc. 4th Int. Meshing Roundtable,
SAND95-2130, pp. 165-176, October 1995.

T. Blacker, The Cooper Tool, Proc. 5th Int. Meshing Roundtable, SAND96-2301, pp. 13—
30, October 1996.

D. R. White and T. J. Tautges, Automatic Scheme Selection for Toolkit Hex Meshing, Int.
J. Meth. Eng., vol. 49, pp. 127-144, September 2000.

S. A. Mitchell, High Fidelity Interval Assignment, Proc. 6th Int. Meshing Roundtable,
SAND97-2399, pp. 33-44, October 1997.

W. R. Oakes, P. J. Henning, M. L. Gittings, and R. P. Weaver, On 3D, Automated, Self-
Contained Grid Generation within the RAGE CAMR Hydrocode, in B. K. Soni,
J. Hauser, J. F. Thompson, and P. Eiseman (eds.), 7th Int. Conf. Numerical Grid Gen-
eration in Computational Field Simulation, pp. 973-981, September 25-28, 2000.

R. M. Baltrusaitis, M. L. Gittings, R. P. Weaver, R. F. Benjamin, and J. M. Budzinski,
Simulation of Shock-Generated Instabilities, Phys. Fluids, vol. 8, pp. 2471-2483, 1996.
R. P. Weaver, M. L. Gittings, M. R. Clover, and H. P. Pritchard, The Parallel Im-
plementation of RAGE: A 3-D Continuous Adaptive Mesh Refinement Shock Code,
ISSW22, July 18-23, 1999.

A. Khamayseh and G. Hansen, Quasi-Orthogonal Grids with Impedance Matching,
SIAM J. Sci. Comput., vol. 22, pp. 1220-1237, 2000.

J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin, Numerical Grid Generation, Foun-
dations and Applications, Elsevier, New York, 1985.

K. Morgan, P. J. Brookes, O. Hassan, and N. P. Weatherill, Parallel Processing for the
Simulation of Problems Involving Scattering of Electromagnetic Waves, Comput. Meth.
Appl. Mech. Eng., vol. 152, pp. 157-174, 1998.

R. Said, N. P. Weatherill, K. Morgan, and N. A. Verhoeven, Distributed Parallel De-
launay Mesh Generation, Comput. Meth. Appl. Mech. Eng., vol. 177, pp. 109—125, 1999.
K. Morgan, N. P. Weatherill, O. Hassan, P. Brookes, R. Said, and J. W. Jones, A Parallel
Framework for Multi-Disciplinary Aerospace Engineering Simulation Using Unstruc-
tured Meshes, Int. J. Numer. Meth. Fluids, vol. 31, pp. 159-173, 1999.

M. T. Manzari, O. Hassan, K. Morgan, and N. P. Weatherill, Turbulent Flow Compu-
tations on 3D Unstructured Grids, Finite Elements Anal. Des., vol. 30, pp. 353-363, 1998.
N. P. Weatherill, E. A. Turner-Smith, M. J. Marchant, O. Hassan, and K. Morgan,
An Integrated Software Environment for Multi-Disciplinary Computational Engineering,
Eng. Comput., vol. 16, pp. 913-933, 1999.

J. F. Thompson, B. K. Soni, and N. P. Weatherill (eds.), Handbook of Grid Generation,
CRC Press, New York, 1999.

G. E. Carey, Computational Grids: Generation, Adaptation and Solution Strategies, Taylor
& Francis, Washington, DC, 1997.

P. Knupp and S. Steinberg, The Fundamentals of Grid Generation, CRC Press, New York,
1993.

P. J. Frey and P.-L. George, Mesh Generation: Application to Finite Elements, Hermes,
Oxford, U.K., 2000.

http://lucia.catchword.com/nw=1/rpsv/1070-6631^281996^298L.2471[aid=2197727]
http://lucia.catchword.com/nw=1/rpsv/0045-7825^281998^29152L.157[aid=2197729]
http://lucia.catchword.com/nw=1/rpsv/0045-7825^281999^29177L.109[aid=2197730]
http://lucia.catchword.com/nw=1/rpsv/0271-2091^281999^2931L.159[aid=2197731]
http://lucia.catchword.com/nw=1/rpsv/0168-874X^281998^2930L.353[aid=1587165]
http://lucia.catchword.com/nw=1/rpsv/0045-7825^281998^29152L.157[aid=2197729]

